Since CF bisects∠ACB, BE bisect∠ABC
m∠CBO=m∠ABC/2
m∠BCO=m∠ACB/2
Using the Triangle Sum Theorem
m∠CBO+m∠BCO+m∠BOC=180
m∠ABC/2+m∠ACB/2+m∠BOC=180
(m∠ABC+m∠ACB)/2+m∠BOC=180
Since 180-m∠A=(m∠ABC+m∠ACB)
(m∠ABC+m∠ACB)=116
116/2+m∠BOC=180
58+m∠BOC=180
m∠BOC=122
No comments:
Post a Comment